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Abstract
System designs for bounded communication latencies often em-

ploy a rather basic concept at their core: First-In First-Out (FIFO)

queueing. Network Calculus (NC) can compute delay bounds for

the end-to-end communication of data flows crossing potentially

large feedforward networks of such First-In First-Out (FIFO) sys-

tems. Analysis complexity stems from the need to keep track of the

interactions between flows when they compete for resources, i.e.,

multiplex in shared queues.

Network Calculus (NC) has an elegant solution to this: an open,

so-called First-In First-Out (FIFO) parameter is introduced every

time a (worst-case) First-In First-Out (FIFO) interaction occurs in

the analysis. At the end of the analysis stands a (min,plus)-algebraic

term with interdependent First-In First-Out (FIFO) parameters. We

aim at finding an optimal setting for all open parameters. When

employing standard optimization techniques, we cannot work with

a parameterized (min,plus)-algebraic term directly. Thus, we show

how to derive a minimum size (plus,times)-algebraic term that

we can use with Non-Linear Program (NLP) solvers efficiently.

Additionally, we show how to differentiate this term to open our

approach to gradient-based Non-Linear Program (NLP) algorithms.

In numerical evaluations, we show that our approach outper-

forms the complexity/accuracy tradeoff of existing heuristics to set

the First-In First-Out (FIFO) parameters. With a slight increase of

analysis runtime, we reduce the gap to the optimal setting by a

factor of 4.4, to 0.15% on average.
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1 Introduction
Bounded end-to-end delay of a data flow communication is essential

for many applications, e.g., on factory floors and in the avionics

sector. Thus, modern networking standards such as IEEE Time-

Sensitive Networking (TSN) and IETF Deterministic Networking

(DetNet) aim for system designs that guarantee such bounds.

One of the core design features of these systems is the use of

First-In First-Out (FIFO) queues where multiple flows may multi-

plex in FIFO order. E.g., in IEEE 802.1Qbv, part of the TSN standard,

output ports of switches are composed of eight such FIFO queues

of different priorities whose forwarding is additionally restricted

by a time-based transmission selection. Analyzing worst-case delay

bounds in a network of such queues is challenging, yet, Network

Calculus (NC) results exist. Foremost, [26] provides the first model

for the worst-case forwarding guarantee of a FIFO queue in such a

configuration. The results in [26] already outperform previous ones

[10] significantly regarding the derived delay bounds. However,

the advanced model was used in a less sophisticated NC analysis,

leaving room for improvement. Another restriction compared to

the previous work is the lack of derivation of configuration pa-

rameters for such a TSN switch. Regarding NC, both these aspects

are related: the advanced FIFO analysis called Least Upper Delay

Bound (LUDB) requires finding the setting for free parameters as

does any other form of network configuration synthesis. Therefore,

we aim at applying a method recently proposed to synthesize net-

work configurations under delay constraints, called Differential NC

(DiffNC) [14]. Our work thus takes the next step towards efficiently

synthesizing TSN configurations subject to accurately bounded

delays in FIFO queueing networks.

Analyzing such FIFO queueing networks is not trivial. To do so,

NC derives a parameterized (min,plus)-algebraic terms with free pa-

rameters that “encode” the impact of each FIFO interaction of flows

on each other. The challenge is then to efficiently find a setting for

each parameter such that the computed delay bound is minimized,

see for example [2, 24]. We propose to apply the DiffNC idea to

it which entails to solve these complex, parameterized operations

in (plus,times)-algebra. [23] provides empirical evidence that the

problem shape is convex such that we also differentiate the term to

test gradient-based algorithms. Somewhat surprisingly, we show

that differentiation and gradient-based optimization need not be

superior to optimization algorithms that do not make use of the

gradient. Overall, our contributions are:

(1) derivation of a minimal, parameterized (plus,times)-algebraic

term bounding the analyzed flow of interest (foi) end-to-end

delay under FIFO assumptions, to be used in a Non-Linear

Program (NLP) solver,

(2) differentiation of this term to allow for use of gradient-based

algorithms,
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(3) an open-source extension to the NetworkCalculus.org De-

terministic Network Calculator (NCorg DNC) for automated

NLP LUDB analysis
1
, and

(4) extensive numerical evaluation where we show that using

NLP algorithms, even non-gradient-based ones, can outper-

form previous approaches by a significant margin. Compared

to the heuristic recommended in [24], we reduce the gap to

the optimal setting by a factor of 4.4, to 0.15% on average

while only adding slightly to the computation time.

This may even come as a surprise as the term from contribu-

tion 1 is actually a piecewise linear function, not a non-linear

one.

The remainder of the paper is organized as follows: Section 2

provides the background on NC and building on it, Section 3 gives

an overview on the history of the NC FIFO analysis, i.e., surveys

the related work. In Section 4, we present the derivation of the

minimal, parameterized (plus,times)-algebraic term bounding the

end-to-end delay, its utilization in an NLP formulation, how to dif-

ferentiate it for gradient-based NLP, and our open-source toolchain.

Section 5 benchmarks our analysis with respect to existing ones

before Section 6 concludes the paper.

2 Deterministic Network Calculus
2.1 Network Calculus Modeling
NC is based on the notion of networks of queueing locations. These

locations consist of a queue for buffering incoming data of poten-

tially multiple flows that is served by some aggregate scheduler. In

the NC model, these two parts are generally depicted as a single en-

tity, a so-called server. Servers can model rather simple constructs

like a single FIFO queue served by a constant rate link [6] but also

parts of more involved architectures such as a single priority queue

in a TSN design that is controlled by an IEEE 802.1Qbv Time-Aware

Shaper (TAS) [26].

Queueing locations of a network form a graph, the so-called

server graph G = (S, E) where S denotes the set of servers and E
the set of directed edges between servers (see Figure 1a for an ex-

ample). We assume that the server graph possesses the feedforward

property, i.e., flows that cross the server graph cannot form cyclic

dependencies. All further characteristics are modeled by functions

of the set

F +
0
=
{
𝑓 : R+ → R+ | 𝑓 (0)=0, ∀𝑠 ≤ 𝑡 : 𝑓 (𝑡) ≥ 𝑓 (𝑠)

}
.

These non-decreasing functions allow modeling of cumulative

system behavior. That is, traffic regulation as well as forwarding

service guarantees. The effort to work with, e.g., staircase functions

[17] or pseudo-periodic functions [27] can, however, easily make

an analysis intractable. In practice, piecewise-linear functions from

F +
0
are therefore most commonly found to model regulation and

service [3, 19, 26].

Flows cross the server graph and data put into it by them is

assumed to be upper bounded at the ingress server in G, by an

arrival curve:

1
Our code and data can be accessed at https://github.com/Lukasssssssssss/ICPE2025-

Non-linear-Programming-for-the-Network-Calculus-Analysis-of-FIFO-

Feedforward-Networks.

Definition 1 (Arrival Curve). Assume a flow 𝑓 puts data into
the network as per function 𝐴 ∈ F +

0
that cumulatively counts that

data. Then a function 𝛼 ∈ F +
0

is an arrival curve for 𝑓 if and only if

∀ 0 ≤ 𝑑 ≤ 𝑡 : 𝐴(𝑡) −𝐴(𝑡 − 𝑑) ≤ 𝛼 (𝑑) . (1)

Servers 𝑠 ∈ S offer forwarding of queued data. NC models the

minimum forwarding guarantee as service curves:

Definition 2 (Service Curve). If a server receives a cumulative
data input described by 𝐴 ∈ F +

0
and produces an output 𝐴′ ∈ F +

0
,

then it is said to offer service curve 𝛽 ∈ F +
0

if and only iff

∀𝑡 : 𝐴′ (𝑡) ≥ inf

0≤𝑑≤𝑡
{𝐴(𝑡 − 𝑑) + 𝛽 (𝑑)}. (2)

Some behavioral aspects of the queueing locations, , i.e., the

edges E in the server graph G, are not captured by the input/output-

centric model explicitly but are assumed instead: While a service

curve gives a forwarding guarantee to queued data, it does not de-

fine the order in which this data is forwarded. Put simply, assuming

that the service is always provided to the head of the queue, NC ad-

ditionally requires assumptions on a) the behavior of the queue and

b) the resulting order when multiple flows multiplex into a single

queue. For a), order-preserving FIFO queues are assumed as they

are easily and commonly implemented. An important side-effect

is that FIFO queues retain the order of data within a single flow.

Only few works in the literature deal with the alternative non-FIFO

systems [25] that do not preserve any queueing order. The impact

on multiplexing different flows into one FIFO queue on the overall

service guarantee is, however, a a more widespread research area

in NC. Two regimes have been researched extensively: i) arbitrary

multiplexing where multiplexing can result in any oder between

flows and ii) the order-preserving FIFO multiplexing. The former,

arbitrary multiplexing, constructs the worst-case interaction be-

tween the analyzed data flow (the foi) every time it multiplexes

with another flow. This simplifies the NC analysis tremendously as

the worst case is simple to model: the analyzed flow only receives

service when all other flows have been served. FIFO multiplexing

of ii) is in stark contrast to this as it requires the analysis to trace

the multiplexing flows across multiple servers and find the worst

case for this under FIFO. Yet, modern systems such as TSN are FIFO

systems forming a FIFO network [26] and thus, it is worthwhile to

pursue the FIFO analysis that delivers more accurate bounds for

them.

2.2 Network Calculus Analysis
An NC analysis aims to compute an upper bound on the end-to-end

delay of an foi. In this paper, we use the “classical” (min,plus)-

algebraic analysis. It is based on multiple operations that need to

be arranged to a delay-bounding term reflecting the mutual impact

of flows crossing the server graph G.

In (min,plus)-algebraic NC, systems are modeled in terms of data

rates (cf. arrival curves and service curves in Definition 1 and Defi-

nition 2), i.e., functions of time. A dual approach using (max,plus)

algebra exists where systems are modeled as functions of data, i.e.,

the timestamp of the data arrival or departure is returned by the

functions. We refer the interested reader to [21] for details.

The following binary infix operations work independently of

the FIFO assumption:

https://github.com/Lukasssssssssss/ICPE2025-Non-linear-Programming-for-the-Network-Calculus-Analysis-of-FIFO-Feedforward-Networks
https://github.com/Lukasssssssssss/ICPE2025-Non-linear-Programming-for-the-Network-Calculus-Analysis-of-FIFO-Feedforward-Networks
https://github.com/Lukasssssssssss/ICPE2025-Non-linear-Programming-for-the-Network-Calculus-Analysis-of-FIFO-Feedforward-Networks
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(a) A nested three-server tandem with four flows, the foi and cross-
flows 𝑓1, 𝑓2 and 𝑓3. Edges are implicit by flows traversing between
servers.

(b) The nesting tree representing the (min,plus)-algebraic left-over
service curve computation (𝛽1 ⊖𝜃

1
𝛼1 ) ⊗ ( (𝛽2 ⊗ (𝛽3 ⊖𝜃

2
𝛼2 ) ) ⊖𝜃

3
𝛼3 ) .

Figure 1: Nested tandem and nesting tree example (©A. Scheffler, J. Schmitt, S. Bondorf [24]).

Definition 3 (NC (min,plus) Operations [6, 8]). Let 𝛼1, 𝛼2 ∈
F +
0

be arrival curves and 𝛽1, 𝛽2 ∈ F +
0

be service curves. Then

aggregation: (𝛼1 + 𝛼2) (𝑑) = 𝛼1 (𝑑) + 𝛼1 (𝑑) (3)

concatenation: (𝛽1 ⊗ 𝛽2) (𝑑) = inf

0≤𝑢≤𝑑
{𝛽1 (𝑑 − 𝑢) + 𝛽2 (𝑢)} (4)

output bounding: (𝛼1 ⊘ 𝛽1) (𝑑) = sup

𝑢≥0
{𝛼1 (𝑑 + 𝑢) − 𝛽1 (𝑢)} =: 𝛼 ′

1
(5)

Equation 3 allows for handling two flows as if they were a single

one (concatenation), Equation 4 allows for working with a tandem

of servers as if the servers offered a single service curve, and Equa-

tion 5 allows to compute arrival curves within a network, i.e., after

a flow (or flow aggregate) crossed a server (or concatenation of

servers).

The FIFO assumption becomes crucial if we want to compute a

lower bound on the remaining worst-case left-over service in pres-

ence of a crossflow (or flow aggregate) at a server (or concatenation

of servers). That is, the remaining guarantee after another arrival

curve was deducted from a service curve.

Theorem 1 (FIFO left-over Service Curve [12]). Assume flow
𝑓 with arrival curves 𝛼 is served by a FIFO server with service curve
𝛽 . Then, the left-over service curve considering the forwarding of 𝑓 is

𝛽 l.o. (𝑡) = [𝛽 (𝑡) − 𝛼 (𝑡 − 𝜃 )]↑ · 1{𝑡>𝜃 } =: 𝛽 ⊖𝜃 𝛼, ∀𝜃 ≥ 0 (6)

where [𝑔(𝑥)]↑ = sup
0≤𝑧≤𝑥 𝑔(𝑧), and 1{𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛} is the indicator

function evaluating to 1 if the condition is met and 0 otherwise. We
call 𝜃 ∈ R+ the FIFO parameter.

For a graphical representation, refer to Figure 2b.

The theorem provides a binary infix operation that is comparable

to those of Definition 3. A single service curve and a single arrival

curve are used, despite the FIFO assumption that generates inter-

dependency between all flows at a server, i.e., including the flow/s

that use this guaranteed left-over service. The trick is that the FIFO

parameter 𝜃 “encodes” all potential worst-case FIFO interactions.

That is, 𝛽 l.o. represents an infinite set of left-over service curves, 𝜃s

must be set when all arrival curves are known. Then, a delay bound

can be computed. Any setting of 𝜃s will lead to a valid bound
2
, yet,

2
For all values of 𝜃 smaller than the sum of inherent service latency and the time to

work off the interfering burstiness, there will always be a larger superior 𝜃 value. Thus,

we lower bound our 𝜃 with this value, yet, without introducing an explicit syntax.

only one is optimal in the sense that it will allow for computation

of the tightest delay bound.

Eventually, the (min,plus)-algebraic, delay-bounding term for an

foi consists of the foi’s end-to-end left-over service curve and its

arrival curve.

Theorem 2 (FIFO Delay Bound [6]). Assume flow 𝑓 with arrival
curve 𝛼 that crosses a server (or sequence of servers) guaranteeing
(end-to-end / left-over) service curve 𝛽 to it. In FIFO systems, the end-
to-end delay of 𝑓 is bounded by the horizontal deviation between both
curves:

ℎ𝐷𝑒𝑣 (𝛼, 𝛽) := inf {𝑑 ≥ 0 | (𝛼 ⊘ 𝛽) (−𝑑) ≤ 0} . (7)

Note, that Theorem 2 assumes the FIFO parameter to be set to

compute the horizontal deviation between 𝛼 and one fully specified

𝛽 . The delay bound is sketched in Figure 2a.

3 Related Work
FIFO behavior is a natural assumption and a relatively straight-

forward one to implement, for multiplexing as well as for forward-

ing of data. However, the analysis of FIFO systems with NC turned

out to have its intricacies. We provide an overview of its history, to

survey the work related to our paper, followed by a more in-depth

depiction of the NC analysis we base our contribution on.

3.1 FIFO Analysis in NC
Before Cruz proposed the FIFO left-over service curve in [12], the

analysis had to aggregate all flows crossing a server. Given the

FIFO property, the horizontal deviation as shown in Theorem 2

bound the delay for each flow as well as the whole aggregate, i.e.,

the totality of all flows. All delay bounds on the foi path are then

summed up to its end-to-end delay [11]. This analysis, known as

Total Flow Analysis (TFA), still sees applications today, e.g., in [26].

The so-called Separate Flow Analysis (SFA) applies the FIFO left-

over service curve theorem to separate the foi from its cross-traffic

at each server [6]. All left-over service curves are then concatenated

to a single end-to-end left-over service curve as mentioned in The-

orem 2, yet with one 𝜃 parameter per server. The SFA is known to

There is no upper bound for 𝜃 , i.e., the set remains infinite. In the literature, this is

known as the difference between left-over service curve sets 𝐸 and 𝐸 [1]. For a sketch

of the left-over service curve operation and the set reduction, see Figure 2b.
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(a) A token-bucket arrival curve𝛾𝜎,𝜌 and a rate-latency service curve
𝛽𝑅,𝐿 . The arrival curve depicts a constant (accumulative) data influx
with rate 𝜌 after an initial burst𝜎 . The service curve offers a constant
(cumulative) service with rate 𝑅 after an initial latency 𝐿.
We can bound the delay of arrival curve 𝛾𝜎,𝜌 after being serviced ac-
cording to service curve 𝛽𝑅,𝐿 by computing the time it takes for 𝛽𝑅,𝐿
to service the initial burst 𝜎 of 𝛾𝜎,𝜌 , as depicted by the dashed line.
Computing the delay bound, ℎ𝐷𝑒𝑣 (𝛾𝜎,𝜌 , 𝛽𝑅,𝐿 ) , is generally equiva-
lent to computing the horizontal distance at the height of the arrival
curve burst.

(b) This is a sketch of the left-over operation. The forwarding guar-
antee for flow 𝑓 is represented by a set of functions. Assuming a
token-bucket constraint on 𝑓 and a rate-latency service curve, the
left-over service curve set results from subtracting the former, right-
shifted by 𝜃 ≥ 0, from the latter while mapping negative results as
well as 𝑡 ≥ 𝜃 to zero. Finding the optimal curve for delay bounding
from this infinite set of service curves equals finding the optimal
𝜃 . It is possible to reduce the search space: 𝜃 > 𝜃𝑚𝑖𝑛 , defines curves
with a constantly lower service guarantee (e.g. the light-blue curve)
than others, 𝜃 ≥ 𝜃𝑚𝑖𝑛 (e.g. the orange curve). The remaining 𝜃 values
define our optimization problem. For a more rigorous derivation,
refer to [1].

Figure 2: Arrival and service curves, as well as the delay bounding and FIFO left-over operations.

result in more accurate delay bounds than the TFA as it implements

to so-called Pay Bursts Only Once (PBOO) principle: separating

the foi and concatenating the left-over service curve means the

foi arrival curve will not be required at each server. That is, its

burstiness need not be explicitly bounded at each server (by output

bounding of Definition 3) for the delay bound computation. Instead,

it only appears once in the derivation, when applying Theorem 2.

A further improvement of the delay bound was found to be

possible by extending the PBOO principle to the cross-flows [13].

The approach attempts to concatenate servers before the left-over

operation. In this analysis, the 𝜃 parameters are set to a fixed value

a priori. This was shown to be inferior to leaving the 𝜃 parameters

open and optimizing them after the symbolic, delay-bounding term

was derived. The analysis doing so is called LUDB [20]. Details, in-

cluding the known attempts to set the interdependent 𝜃 parameters,

are presented in Section 3.2 and Section 3.3.

The LUDB requires to decompose a feedforward network into

tandems of servers without overlapping interference. This decom-

position may require to bound flows that are found on adjacent

tandems, i.e., PBOO for cross-traffic commonly known as Pay Multi-

plexing Only Once (PMOO) is not fully achieved. A countermeasure

that can further improve accuracy of the LUDB was recently pro-

posed in [16].

3.2 The LUDB for Feedforward Networks
Conceptually, Least Upper Delay Bound (LUDB) for Feedforward

Networks (LUDB-FF), an extension of LUDB for analysis of tandems,

consists of two parts:

a) the feedforward (FF)-part decomposes the server graph into

a sequence of tandems (see [3, 23] for details) and then

b) the LUDB-part decomposes the tandem under analysis into

sequences of tandems without overlapping interference and

computes a bound, i.e., delay on it or output from it.

We focus on the individual tandems at the end of both decompo-

sitions. These tandems are called nested tandems. All flows on a

nested tandem have either disjunct paths or a flow path is a sub-

path of a different flow path. The subpath relationship allows for

subsequent application of the binary infix operations defined in

Definition 3 and the left-over service curve Theorem 1 that intro-

duces the free 𝜃 . This order of operations can be encoded as a binary

tree, the so-called nesting tree. An example is shown in Figure 1.

The nesting tree also depicts the interdependencies between FIFO

parameters of the analysis.

LUDB proposes to use optimization algorithms to find the values

for the 𝜃s in the nesting tree. It is restricted to rate-latency service

curves 𝛽𝑅,𝐿 (𝑡) = 𝑅 [𝑡 − 𝐿]+,∀𝑡 ≥ 0, and token-bucket arrival curves

𝛾𝜎,𝜌 (𝑡) = 𝜎 + 𝜌 · 𝑡,∀𝑡 ≥ 0 (see Figure 2a). The authors identify that

its objective function will then be a Piecewise Linear Program (PLP)

and state that “A closed-form solution for a generic nested tandem

is still missing as of today” [2]. Therefore, the PLP is decomposed

into a set of LPs by a recursive procedure that traverses the nesting

tree. The LPs are then solved, i.e., the optimal 𝜃s are found, for

delay or output bounding.

It was shown in [23] that solving the LPs (using IBM CPLEX)

requires the majority of the computation time, usually above 95%.

The authors propose to use a directed search as a fast yet accurate
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heuristic instead. This search, a directed search called DS-FF, eval-

uates the nesting tree for a setting of the 𝜃s without the need to

derive a closed-form solution. Moreover, its termination criterion

can be freely set in order to steer the tradeoff between runtime and

accuracy. The authors show that the effort of the search scales su-

perlinearly with this termination criterion. Thus, it is to be expected

that the addition of further parameters to the objective would only

be feasible if traded against delay bound accuracy. Unfortunately,

while this previous work identified the LUDB problem shape as

most probably convex (not proved), it did not evaluate gradient-

based algorithms.

3.3 Optimization in NC and Differential NC
Optimization tools have been integrated into the NC in various

ways. The one that deviates to the greatest extend from the back-

ground theory in Section 2 is the holistic optimization. It converts

the NC system model of Section 2.1 into a Mixed-Integer Linear

Program (MILP) [9], making the implicit FIFO assumption explicit

by adding FIFO ordering constraints. While this model theoreti-

cally allows for always computing the tight bound – in contrast

to the (min,plus)-algebraic theorems of Section 2.2 – it strongly

depends on the tool support to solve the MILP formulation. For

this reason, latest research on the branch of holistic optimization

shifted towards finding a good tradeoff between tractability and

accuracy of the analysis [7]. It involves adding TFA and SFA results

as constraints as they are fast to compute and can be sufficiently

accurate to make up for other removed constraints.

In this paper, we integrate NLP into LUDB to derive the 𝜃 values.

That is, we use optimization tools after having applied the theo-

rems of Section 2.2, the “classical” (min,plus)-algebraic NC analysis.

This “classical” analysis is, in principle, a symbolic analysis that

proceeds in three steps: i) derive a (min,plus)-algebraic term that

lower bounds the forwarding service that the current foi is guaran-

teed to get, ii) fill in the constraints: upper bounds for the amount

of data that flows can put into the network and lower bounds for

the forwarding service offered at queueing locations, iii) evaluate

the (min,plus)-algebraic term, i.e., compute an end-to-end delay

bound for the foi.

Step i) itself constitutes a compositional analysis of interfering

cross-traffic. It requires backtracking of flow dependencies which

has seen much treatment in the literature [4, 5, 16]. Steps ii) and iii)

constitute the (min,plus) core of NC. Constraints are modeled as

cumulative functions in interval time, the so-called curves. The

use of (min,plus)-algebraic operations results in new, intermediate

curves that bound the result of interactions between data flows

and forwarding service at queueing locations. Examples are flow

aggregation or left-over service guarantees. It was shown that this

three-step approach for the network analysis exposes better scal-

ability than the holistic optimization [3]. Regarding the derived

delay bounds, it can be competitive with the holistic analysis. Over-

all, it provides a better and somewhat steerable trade-off between

complexity and quality. For that reason, that the holistic analysis

was even amended to use algebraic results as additional constraints

[7].

While this speaks for a (min,plus)-algebraic analysis, the ap-

proach has its limitations, too. So far, step ii) requires to fully

specify all parameters in the (min,plus)-algebraic term as there

did not exist an analysis for step iii) that could handle open pa-

rameters. The flexibility to do so is a key strength of the holistic

optimization and a potential motivation to invest the computational

effort into solving an NC-derived optimization problem. However,

recent work called DiffNC [14] broke ground for a different analy-

sis in step iii). Conceptually, the proposal is to take the symbolic,

(min,plus)-algebraic term with open parameters, convert it into a

(plus,times)-algebraic term and use that term as objective function

in an NLP. Depending on the shape of bounding functions, this

conversion can be relatively simple. The running example of that

work uses linear approximations and illustrates how the search

for delay-bound-optimizing flow paths can be solved efficiently.

The name DiffNC is derived from the fact that gradient-based NLP

algorithms performed best on this problem, i.e., differentiation of

the (plus,times)-algebraic term was performed in a step preceding

the optimization. DiffNC was theorized to be extended to synthe-

size further network-defining parameters as they are commonly

found in standards like TSN. Examples given in [14] are priority

assignment and TDMA schedule optimization. The former has been

presented in [15].

Our paper presents another direction of advancement towards

efficiently synthesizing TSN configurations: the integration of NLP

into LUDB to derive the 𝜃 values. In that, it outperforms the search-

based approaches presented in Section 3.2.

4 NLP LUDB
In contrast to the original LUDB analysis we aim at directly bound-

ing the delay of each nested tandem, thereby providing the missing

closed-form solution for generic nested tandems. To achieve this,

we need to find closed-form expressions in (plus,times) algebra for

the results of the (min,plus)-algebraic NC operations defined in

Definition 3. The key to this is to sensibly restrict the input curve

shapes. We use token-bucket and rate-latency curves as LUDB tra-

ditionally does, and abstract from them to a more general curve

shape, the class of pseudoaffine curves, which we show are closed

under the NC operations. We then derive a (plus,times)-algebraic

term bounding an foi end-to-end delay by recursively applying the

NC operations along the foi path in the tandem. We strive for a

minimal expression where we pre-compute as much as possible to

allow for the NLP solver to evaluate efficiently. This step entails to

exhaustively distinct all cases that can occur during computations

with pseudoaffine curves and reduce to the relevant cases.

4.1 The Delay Bounding Term in (plus,times)
Algebra

Bounding the service at each server in the server graph by a rate-

latency service curve 𝛽𝑅,𝐿 and each flow by a token-bucket arrival

curve 𝛾𝜎,𝜌 , we obtain the following (plus,times) expressions of the

(min,plus) operations:

Lemma 3 (Closed-form expression of NC operations [6]).

With the assumption of using rate-latency service curves and token-
bucket arrival curves, the NC operations listed in Section 2.2 have the
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following closed-form solutions:

aggregation: 𝛾𝜎1,𝜌1 + 𝛾𝜎2,𝜌2 = 𝛾𝜎1+𝜎2,𝜌1+𝜌2 (8)

concatenation: 𝛽𝑅1,𝐿1 ⊗ 𝛽𝑅2,𝐿2 = 𝛽min(𝑅1,𝑅2 ),𝐿1+𝐿2 (9)

output bounding: 𝛾𝜎,𝜌 ⊘ 𝛽𝑅,𝐿 = 𝛾𝜎+𝜌 ·𝐿,𝜌 (10)

left-over [2]: 𝛽𝑅,𝐿 ⊖𝜃 𝛾𝜎,𝜌 = 𝛾𝑅[𝜃−(𝐿+𝜎
𝑅 )],𝑅−𝜌 (𝑡 − 𝜃 ),

𝜃 ≥ 𝐿 + 𝜎
𝑅

𝑠 :=𝜃−(𝐿+𝜎
𝑅 )

= 𝛿𝑠+𝐿+𝜎
𝑅
⊗ 𝛾𝑅𝑠,𝑅−𝜌

=: 𝛽𝑅,𝐿 ⊖𝑠 𝛾𝜎,𝜌 , 𝑠 ≥ 0 (11)

delay bound: ℎ𝐷𝑒𝑣 (𝛾𝜎,𝜌 , 𝛽𝑅,𝐿) = 𝜎/𝑅 + 𝐿 (12)

under the condition that 𝜌 ≤ 𝑅 to not overload the system.

See Section 2.2 and Figure 2b for conditions on the above 𝜃 .

The FIFO left-over service curve operation is not closed in the

set of rate-latency curves, i.e., the infinite set of resulting curves

does not only consist of rate latencies. Instead, we obtain a so-called

pseudoaffine curve (see Figure 3a) for each setting of 𝜃 [18]):

𝜋 = 𝛿𝐷 ⊗
[ ⊗
1≤𝑥≤𝑛

𝛾𝜎𝑥 ,𝜌𝑥

]
(13)

where parameter 𝐷 , the initial latency, follows from the compu-

tation in Equation 11 and the 𝛾 functions are called token-bucket

stages. That is, with the open 𝜃 , we have an infinite set of pseudo-

affine FIFO left-over service curves. We denote the curve’s long-

term rate 𝜌∗𝜋 =min𝑥=1,...,𝑛 (𝜌𝑥 ) and demand that 𝜌∗ ≤ 𝑅.

The set of pseudoaffine curves is indeed a common generalization

of token-bucket and rate-latency curves: 𝛽𝑅,𝐿 = 𝛿𝐿 ⊗𝛾𝑅,0 and 𝛾𝜎,𝜌 =

𝛿0 ⊗ 𝛾𝜎,𝜌 .

Pseudoaffine curves are closed under convolution and FIFO left-

over (first stated in [18]), allowing to eventually compute a delay

bounding term consisting of pseudoaffine, potentially𝜃 -parameterized,

curves:

Theorem 4 (Closeness under convolution [18]). Assume two
pseudoaffine curves

𝜋𝑛 = 𝛿𝐷𝑛 ⊗
[ ⊗
1≤𝑥≤𝑛

𝛾𝜎𝑥 ,𝜌𝑥

]
and 𝜋𝑚 = 𝛿𝐷𝑚 ⊗

[ ⊗
𝑛+1≤𝑥≤𝑚

𝛾𝜎𝑥 ,𝜌𝑥

]
,

then their convolution produces another pseudoaffine curve with com-
bined token-bucket stages:

𝜋𝑛 ⊗ 𝜋𝑚 = 𝛿𝐷𝑛+𝐷𝑚 ⊗
[ ⊗
1≤𝑥≤𝑛+𝑚

𝛾𝜎𝑥 ,𝜌𝑥

]
(14)

The convolution of two one-stage pseudoaffine curves can be

seen in Figure 3b.

Theorem 5 (Closeness under left-over [18]). For a pseudo-
affine service curve 𝜋 = 𝛿𝐷 ⊗

[⊗
1≤𝑥≤𝑛 𝛾𝜎𝑥 ,𝜌𝑥

]
, and token-bucket

arrival curve 𝛼 = 𝛾𝜎,𝜌 with 𝜌 ≤ 𝜌∗, the set of relevant left-over service

curves is given by

𝜋 ⊖𝜃 𝛼 = 𝜋 ⊖𝑠 𝛼 = 𝛿𝐷𝑙 .𝑜. ⊗
[ ⊗
1≤𝑥≤𝑛

𝛾
𝜎𝑙 .𝑜.𝑥 ,𝜌𝑙 .𝑜.𝑥

]
with (15)

𝐷𝑙 .𝑜. = ℎ𝐷𝑒𝑣 (𝛼, 𝜋) + 𝑠 (16)

𝜎𝑙 .𝑜.𝑥 = 𝜌𝑥 {𝑠 + ℎ𝐷𝑒𝑣 (𝛼, 𝜋) − 𝐷} − (𝜎 − 𝜎𝑥 ) (17)

𝜌𝑙 .𝑜.𝑥 = 𝜌𝑥 − 𝜌 (18)

where 𝑠 := (𝜃 − ℎ𝐷𝑒𝑣 (𝛼, 𝜋)) ∈ R+.

Similarly to Equation 11, we can implicitly lower bound our 𝜃

by introducing a new parameter 𝑠 . For any 𝜃 < ℎ𝐷𝑒𝑣 (𝛼, 𝜋), there
is a 𝜃 ≥ ℎ𝐷𝑒𝑣 (𝛼, 𝜋) whose corresponding left-over service curve

is superior. Analogously to left-over operations on rate-latency

curves, this is denoted in literature as the difference between left-

over service curve sets 𝐸 and 𝐸 [18]. We provide an exhaustive

proof of this in Section B.

The output bound computation remains closed in the set of

token-bucket curves, even for the infinite set of pseudoaffine FIFO

left-over service curves.

Theorem 6 (Closeness under output bounding [19]). Assume
a pseudoaffine left-over service curve 𝜋 ⊖𝑠 𝛾𝜎𝑥 ,𝜌𝑥 and a token-bucket
arrival curve 𝛼 = 𝛾𝜎,𝜌 , where 𝜌∗𝜋 ≥ 𝜌 holds. Then, the output bound
is given by

𝛾𝜎,𝜌 ⊘ (𝜋 ⊖𝑠 𝛾𝜎𝑥 ,𝜌𝑥 ) = 𝛾𝜎,𝜌 ⊘
(
𝛿𝐷𝑙 .𝑜. ⊗

[⊗
1≤𝑥≤𝑛 𝛾𝜎𝑙 .𝑜.𝑥 ,𝜌𝑙 .𝑜.𝑥

] )
= 𝛾𝜎+𝜌 ·𝐷𝑙 .𝑜.,𝜌 (19)

This means, when decomposing the server graph into nested

tandems and bounding the output of flows crossing them, the flows’

arrival curves will always have a token-bucket shape. That is, all ar-

rival curves – even the intermediate output bounds – to be removed

from pseudoaffine service curves by the left-over operation will

be token buckets, as assumed in Theorem 5. Note, that Theorem 6

presents the most generic service curve, resulting from subsequent

FIFO left-over operations. Special, commonly found instantiations

are:

𝛾𝜎,𝜌 ⊘ (𝛽𝑅,𝐿 ⊖𝑠 𝛾𝜎𝑥 ,𝜌𝑥 ) = 𝛾𝜎,𝜌 ⊘ (𝛿𝑠+𝐿+𝜎𝑥
𝑅

⊗ 𝛾𝑅𝑠,𝑅−𝜌𝑥 )
= 𝛾𝜎+𝜌 · (𝐿+𝜎𝑥

𝑅
),𝜌 (20)

𝛾𝜎,𝜌 ⊘ 𝜋 = 𝛾𝜎,𝜌 ⊘
(
𝛿𝐷 ⊗

[⊗
1≤𝑥≤𝑛 𝛾𝜎𝑥 ,𝜌𝑥

] )
= 𝛾𝜎+𝜌 ·𝐷,𝜌 (21)

Finally, for the delay bound, we get the following expression for

each element of the infinite set, such that the least one among them

is the Least Upper Delay Bound (LUDB):

Theorem 7 (Delay Bound [18]). Let 𝜋 be a pseudoaffine curve
𝜋 = 𝛿𝐷 ⊗

[⊗
1≤𝑥≤𝑛 𝛾𝜎𝑥 ,𝜌𝑥

]
and let 𝛼 be a token-bucket arrival curve

𝛾𝜎,𝜌 with 𝜌∗𝜋 ≥ 𝜌 . Then, the delay boundℎ𝐷𝑒𝑣 (𝛼, 𝜋) can be calculated
using the pseudo-inverse 𝜋−1 (·) of 𝜋 (·) defined in [6]:

ℎ𝐷𝑒𝑣 (𝛼, 𝜋) = 𝜋−1 (𝜎) = 𝐷 +
[ ∨
1≤𝑥≤𝑛

𝜎 − 𝜎𝑥

𝜌𝑥

]+
(22)

From Theorem 3 and Theorems 4 to 7 we now know the shape

of curves in our analysis as well as the delay bounding. By recur-

sively applying these theorems along the path of the foi in the
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(a) A pseudoaffine curve 𝜋 (𝑡 ) consists ofmany token-bucket “stages”.
The curve form is given by an initial latency 𝐷 and the convolution
of its stages.

(b) The origin of a pseudaffine curve lies in the FIFO left-over opera-
tion resulting in a function that resembles a shifted token-bucket
curve (the orange curve in figure 2b). These functions are already
pseudoaffine curves. Convolving such functions then introduces
more stages.

Figure 3: The structure and origin of pseudoaffine curves.

tandem, we arrive at a closed-form (plus,times)-algebraic term for

the end-to-end delay bound of said foi. This closed-form expression

forms a parameterized piecewise-linear function, with one FIFO

parameter for each crossflow on the foi path. A graphical sketch of

an exemplary computation for the network in Figure 1a is given in

Appendix A.

4.2 Using Non-linear Optimization
The closed-form solution, our parameterized delay-bounding term

in (plus,times) algebra, can now directly be used as the objective

function of an optimization formulation without decomposition

into LPs as proposed by the original LUDB. We can confirm that

the function is piecewise linear and while it is not proven that our

problem space is convex, results in [24] suggest it. A convex problem

space opens the way for gradient-based optimization strategies.

Inspired by the efficiency of DiffNC [14] that uses NLP, we opted

to replicate that approach. Even though NLP solvers do not guaran-

tee for optimality – their result depends on the applied algorithm

and the specific optimization problem – we will show in Section 5

that the derived delay bounds are competitive and even outper-

form existing analyses. Additionally, NLP solvers are applicable to

a wider range of optimization problems. This makes our analysis

more adaptable to possible future changes and extensions.

In [14], a different problem is formulated as a relaxed mixed-

integer nonlinear programming (MINLP). This class of optimization

problems include mixed-integer linear problems, which are NP-

hard, and inherits this property from them. The authors showed that

gradient-based NLP algorithms not only outperform non-gradient-

based algorithms in solving the NLP, they are also seem sufficiently

efficient to be extended to more complex problem formulations.

Lastly, DiffNC found that a gradient-based NLP delivered the best

tradeoff between analysis runtime and accuracy. It is therefore

reasonable to include gradient-based NLP algorithms into our set of

solvers. Thus, we will show how to differentiate the delay-bounding

term to open our NLP approach up to these algorithms.

4.3 Differentiating Network Calculus Terms
with FIFO left-over Operations

The parameterized delay-bounding term is obtained by applying

Theorems 4 to 5 as we progress through the nesting tree while keep-

ing all FIFO parameters open. To use gradient-based optimization

algorithms for finding the optimal settings of the FIFO parameters,

we need to derive the gradient of the delay-bounding term w.r.t to

the FIFO parameters.

Theorem 8 (Differentiability of the Delay Bound). Assum-
ing pseudoaffine service curves and token-bucket arrival curves, the
parametrized NC end-to-end delay bound is differentiable w.r.t the
open FIFO parameters.

Proof. Using the operations defined in Theorems 4 to 5, the

symbolic term for the delay bound uses the following basic opera-

tions: addition, subtraction, multiplication, division, max, and [·]+.
For the max operator, we define the following partial derivatives

for 𝑥 ≠ 𝑦 [14]

𝜕max(𝑥,𝑦)
𝜕𝑥

=

{
0, if 𝑥 < 𝑦

1, if 𝑥 > 𝑦

𝜕max(𝑥,𝑦)
𝜕𝑦

=

{
1, if 𝑥 < 𝑦

0, if 𝑥 > 𝑦

The [·]+ operator can be rewritten in terms of the max opera-

tor as [𝑥]+ = max(𝑥, 0), proving its differentiability. Then, Equa-

tions 16 and 17, and in particular the delay bound in Equation 22

are differentiable w.r.t to the FIFO parameters. □

A note on the differentiability of the max operation: To avoid evalua-

tion errors of the solver, it was necessary to define a derivative for

the undefined case max(𝑥,𝑦) with 𝑥 = 𝑦. We use

𝜕max(𝑥,𝑦)
𝜕𝑥

����
𝑦=𝑥

= 0

𝜕max(𝑥,𝑦)
𝜕𝑦

����
𝑥=𝑦

= 0

which is, strictly mathematically speaking, incorrect. However,

every setting of 𝜃s leads to a valid delay bound and as we show
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Figure 4: Delay bound deviations from LUDB-FF. SFA-FIFO, LB-FF, and Directed 𝜃-Search for Feedforward Analysis (DS-FF) are
proposed in [24]. Sequential Least Squares Quadratic Programming (SLSQP), SBPLX based on Subplex (SBPLX), SminS (SminS),
and feedforward integrated SminS (SminS) (SminSFF-integrated) are our most competitive NLP algorithms.

in our numerical evaluation, the quality of our derived parameter

settings and delay bounds still vastly outperform other analyses.

4.4 The NLP LUDB Toolchain
The proposed NLP LUDB analysis is fully integrated into the Net-

workCalculus.org Deterministic Network Calculator (NCorg DNC)
3
.

Differentiation of the NC terms has been implemented in JAutoDiff
4
,

an open-source Java tool for automatic differentiation. For solving

the non-linear optimization problem, we use the NLP library NLopt.

NLopt offers a rich set of algorithms, including gradient-based ones.

We interface using the open-source Java bindings for nlopt4j
5
.

5 Numerical Evaluation
5.1 Evaluated Networks
For numerical evaluation, we used the set of randomly generated

feedforward networks following the Erdős-Rényi model described

in [24]. The dataset consists of 31 networks with a total of 4479

flows. The full dataset is available online
6
.

5.2 Evaluation Setup
Extending the code base of the open-source NCorg DNC, see Sec-

tion 4.4, allows us to provide benchmarks against the results shown

in [24]. These are the search-based algorithm called DS-FF𝜖 with the

recommended termination criterion alternatives 𝜖 ∈ {10−3, 10−9},
as well as the SFA. All runtimes were measured on a Lenovo Think-

Station P620 with an AMD Ryzen Threadripper PRO 3955WX CPU

3
dnc.networkcalculus.org, github.com/NetCal/DNC

4
github.com/uniker9/JAutoDiff

5
github.com/dibyendumajumdar/nlopt4j

6
github.com/alexscheffler/dataset-rtns2022

clocked at (max) 4.30 GHz, running Ubuntu 22.04.1 LTS and Open-

JDK 17.

5.3 Delay Bound Comparison
To find the optimal 𝜃 parameters, we need to solve the optimiza-

tion problem resulting from each nested tandem in LUDB-FF (see

Section 3.2, decompositions a) and b)). For that purpose we used
the NLopt library, which provides several different algorithms for

non-linear optimization, each yielding different results in terms of

delay bound quality and runtime. We lay our focus on the most

competitive algorithms:

(1) Sequential Least Squares Quadratic Programming (SLSQP)

uses this algorithm to solve each optimization problem. It

has already been found to work well for finding delay-bound-

optimizing flow paths [14].

(2) SBPLX based on Subplex (SBPLX) [22] is a bound-constrained

gradient-free optimization algorithm. Solving all optimiza-

tion problems with SBPLX produced results comparable to

SLSQP.

(3) Both above algorithms achieve comparable overall results,

but either one may considerably beat the other for specific

flow analyses. For each flow, we thus also present the mini-

mum delay bound and the sum of computation times of both

above analyses as SminS.

(4) We define another new combination of SLSQP and SBPLX,

one that is integrated into the LUDB-FF feedforward anal-

ysis: feedforward integrated SminS (SminSFF-integrated). This

algorithm executes SminS on each nested tandem found in

the feedforward network decomposition of LUDB-FF.
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Figure 5: Runtime evaluation based on our analysis of 4479 flows across 31 networks.

We start with initial values of zero for all parameters. Each algo-

rithm is set to terminate after an optimization step causes a relative

change in the parameter value by less than 0.01%. To evaluate the

quality of the delay bounds, we compare the bounds achieved with

the algorithms mentioned above and some other algorithms from

the NLopt library
7
to existing analyses, such as Separate Flow Anal-

ysis (SFA) under First-In First-Out (FIFO) assumptions (SFA-FIFO),

Lower 𝜃 -Bound for Feedforward Analysis (LB-FF), DS-FF [24]. We

measure the competitiveness of the achieved bounds as the devia-

tion to the delay bounds obtained by an LUDB-FF analysis, defined

by

𝑑𝑒𝑙𝑎𝑦analysis,LUDB-FF =
𝑑𝑒𝑙𝑎𝑦analysis − 𝑑𝑒𝑙𝑎𝑦LUDB-FF

𝑑𝑒𝑙𝑎𝑦LUDB-FF
(23)

Figure 4 shows that all of our most competitive algorithms,

SLSQP, SBPLX, SminS, and SminSFF-integrated, achieve equal or better

results than the established analyses. SLSQP and SBPLX already

achieve delay bounds that compare to DS-FF
10

−9 , the most com-

petitive of the established algorithms, at 0.44% and 0.45% average

deviation to LUDB-FF, respectively. Their maximum deviation from

LUDB-FF slightly exceeds that of DS-FF
10

−9 , at 9.01% for SLSQP and

11.84% for SBPLX, compared to 8.56% for DS-FF
10

−9 . Yet note, that

[24] actually proposes to use DS-FF
10

−3 due to the dismal runtime

performance of DS-FF
10

−9 as we will see later. SminS drastically

improved the achieved delay bounds. It achieved an average devi-

ation from LUDB-FF by 0.18%, about one third of the result from

DS-FF
10

−9 . Its maximum deviation of 4.11% lies at less than half of

that of DS-FF
10

−9 . Using our SminSFF-integrated algorithm, we could

improve the delay bound quality even further, to 0.15% deviation

to LUDB-FF on average and 4.02% at most.

Additionally, Figure 4b shows the ECDF of delay bound devia-

tions. Our NLP algorithms all have a considerably larger share of

bounds that deviate at most 0.1% from LUDB-FF. SminS approaches

7
See nlopt.readthedocs.io/en/latest/NLopt_Algorithms/ for information about the

algorithms.

a density of 1 faster than SLSQP and SBPLX individually, showing

the motivation behind executing both. SminSFF-integrated performs

slightly better than SminS w.r.t. delay bound deviation.

5.4 Runtime Comparison
To explore the practicability of our analyses, we inspect their run-

time. We focus on the runtime over an entire network analysis, that

is the total time to bound all flows’ end-to-end delay in one network

size, and compare our results to LUDB-FF, LB-FF, and DS-FF.

First, we observe in Figure 5b that all our most competitive

algorithms are consistently faster than LUDB-FF. Figure 5a shows

that the average per-flow runtime of SLSQP and SBPLX also beat

both DS-FF algorithms we chose for comparison, DS-FF
10

−3 and DS-

FF
10

−9 . Remember that they simultaneously achieved delay bounds

that are comparable to DS-FF
10

−9 . In LUDB-FF analyses, more than

95% of the total runtime was spent on the solver. The runtimes of

SLSQP and SBPLX suggest that this is not the case anymore when

using an NLP solver instead of the LP solver CPLEX. Unsurprisingly,

SminS takes as long as SLSQP and SBPLX combined, as it analyses

any given network with both algorithms and combines the results.

Doing so, it runs about 87% faster than DS-FF
10

−9 and about 56%

slower than DS-FF
10

−3 . SminSFF-integrated, our best algorithm in terms

of the quality of the delay bounds, runs almost 90% faster than

DS-FF
10

−9 and only about 24% slower than DS-FF
10

−3 . The median

relative runtime
runtime

LUDB-FF

runtime
SminSFF-integrated

of SminSFF-integrated w.r.t LUDB-

FF is 110. SminSFF-integrated is therefore two orders of magnitude

faster than LUDB-FF, whilst achieving delay bounds that are on

average within a deviation of only 0.15% of LUDB-FF.

Note that while SminSFF-integrated and SminS each use both, SLSQP

and SBPLX, to find the optimal 𝜃 settings, SminSFF-integrated is about

21% faster than SminS. This can be explained by a slight difference

in the procedure. SminS runs two independent analyses for each

flow, SLSQP and SBPLX, and compares the results at the end. This
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way, some of the required analysis steps are executed twice: back-

tracking of flow dependencies, decomposition into nested tandems,

the derivation of the optimization problems. SminSFF-integrated, on

the other hand, does all of this only once per analysis, i.e., it runs

both, SLSQP and SBPLX, on the same optimization problem. The

speedup of SminSFF-integrated compared to SminS is therefore not

within the time to run the solver, but in the time it takes to derive

the optimization problem.

6 Conclusion
In this paper, we tackle a main challenge within the (min,plus)-

algebraic NC FIFO analysis called LUDB [2]. In the delay-bounding

(min,plus)-algebraic term, there are free, interdependent parame-

ters that need to be set efficiently and such that the analysis still

gives an accurate delay bound. We show how to do so by non-linear

programming, an idea derived from recent work on a different op-

timization problem within NC [14] called DiffNC. In order to do so,

we derive a minimal closed-form solution of the delay-bounding

term in (plus,times) algebra that is parameterized with the FIFO

parameters mentioned above. This term can be used as the objective

function in an optimization formulation in our NLP FIFO analysis.

Additionally, we show how to differentiate the term in order to

open up the opportunity to use gradient-based algorithms as they

were used in DiffNC. We provide a new open-source toolchain for

this analysis, allowing for benchmarking against existing heuristics

for this problem [24] as well as the optimization that was proposed

by the original authors. Compared to the heuristic recently rec-

ommended in [24], we reduce the gap to the optimal setting by

a factor of 4.4, to 0.15% on average while only adding 24% to the

computation time. This computation time is well below the one for

finding the optimal setting.

6.1 Future Work
One of the contributions of our paper is the closed-form solution in

(plus,times) algebra. Previous work either worked by decomposition

into partial optimization problems or operated on the (min,plus)-

algebraic NC term that cannot be used as the objective function in a

standard solver. This contribution opens up a wide range of future

work directions. Potential ways to extend the objective function

include, for example, delay bound improving techniques

• decomposition, a.k.a. “cutting”, of non-nested tandems into

nested tandems (see Section 3.2, decomposition b)).
• flow prolongation that tightens delay bounds and was so far

only feasible by using machine learning techniques [23].

as well as a full synthesis of the TSN 802.1Qbv scheduler configu-

rations [26], i.e., the parameters of service-curve-defining priority

FIFO queues and forwarding times, subject to bounds derived with

an accurate LUDB FIFO analysis.

Last, we aim to extend our toolchain such that we can validate

the DiffNC evaluation results.
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A Step-by-step Analysis of an Example Network
Here, we briefly sketch the step-by-step process of deriving the

delay bound in the network of Figure 1a. For the sake of simplicity,

we limit our computation to only two FIFO parameters. We there-

fore assume that flow 𝑓2 is zero. As such, the final computation step

changes to

𝛽𝑙 .𝑜.
𝑓 𝑜𝑖

=

(
𝛽𝑙 .𝑜.
𝑓1

⊖𝜃1 𝛼1

)
⊗ 𝛽𝑙 .𝑜.

𝑓3

=

(
𝛽𝑙 .𝑜.
𝑓1

⊖𝜃1 𝛼1

)
⊗
(
𝛽𝑙 .𝑜.
𝑓2

⊖𝜃2 𝛼2

)
We will apply the computations in Theorem 3 and Theorems 4

to 7 following the computation steps in Figure 1b taking into ac-

count our additional assumption. We start by computing the left-

over service, the foi experiences over its path from server 2 to server

3 considering crossflow 𝑓2. To compute the left-over service, we

apply Theorem 3 and Theorem 4, which is sketched in Figure 6a.

We then compute the left-over service available at server 1 con-

sidering crossflow 𝑓1 and finally we compute the total left-over

service available to the foi over its entire path. This is displayed in

Figure 7b.

With the total left-over service available to the foi known, we

can now search for the optimal delay bound and the corresponding

optimal values of the introduced parameters 𝜃1 and 𝜃2. The delay

bound w.r.t. to the introduced parameters is shown in Figure 8. Our

strategy to solve this optimization problem is described in Section 5.

B Set Reduction of the FIFO Left-over
Operation on Pseudoaffine Curves

In this section we will take a closer look at the FIFO left-over

operations and why a subset of the set of valid left-over service

curves can be excluded. In particular we will explore why we can

substitute 𝑠 = 𝜃 − ℎ𝐷𝑒𝑣 (𝛼, 𝜋), 𝑠 ≥ 0 as our new FIFO parameter,

thereby bounding 𝜃 by ℎ𝐷𝑒𝑣 (𝛼, 𝜋) from below, as was done in

Theorem 5. Note that this insight was first introduced in [18], the

statement itself therefore constitutes no new contribution. However,

we provide a more complete proof of it that is independent of the

decomposition of the PLP into LPs.

To understand, why this excluded set of curves is irrelevant for

delay bounding, we first need to understand how delay bounding

works.

B.1 Delay Bounding
The delay bound ℎ𝐷𝑒𝑣 (𝛼, 𝜋), see Theorem 2, is defined as the time

it takes before an arriving flow is being processed. Mathematically,

it can be seen as the horizontal deviation between the arrival curve

at the point of its initial burst and the curve of the service offered

to it. Assuming a token-bucket arrival curve 𝛼 = 𝛾𝜎,𝜌 (𝑡) and a

pseudoaffine service curve 𝜋 (𝑡), the delay bound ℎ𝐷𝑒𝑣 (𝛼, 𝜋) can
then be derived from solving 𝜋 (ℎ𝐷𝑒𝑣 (𝛼, 𝜋)) = 𝜎 .

B.2 Left-over Service Curve Assuming FIFO
Multiplexing

Assume flow 𝑓 with arrival curve 𝛼 is serviced by a server with

service curve 𝜋 . In the following we will assume the arrival curves

to be a token-bucket curve 𝛼 = 𝛾𝜎,𝜌 , 𝜎, 𝜌 ∈ R+
and all service curves

to be pseudoaffine curves of the form

𝜋 = 𝛿𝐷 ⊗
[⊗

1≤𝑥≤𝑛 𝛾𝜎𝑥 ,𝜌𝑥
]
, 𝐷, 𝜎𝑥 , 𝜌𝑥 ∈ R+

. After servicing flow 𝑓 ,

the server can offer only a reduced service. This service is described

by the left-over service curve and can be computed from the initial

service curve and flow 𝑓 arrival curve 𝛼 . However, 𝑓 might arrive

with a delay which is encoded in the FIFO parameter 𝜃 ∈ R+
.

Mathematically, we subtract 𝛼 from 𝜋 , but allow for 𝛼 to be

shifted to the right by 𝜃 . Note that the left-over service expressed

by a service curve is lower bounded by zero. In this case, the server

is still processing the queued-up data from flow 𝑓 and cannot offer

any left-over service. Similarly, the left-over service curve needs to

be set to zero for 𝑡 < 𝜃 .

Due to the flexibility in setting 𝜃 to any positive real value, we

end up with an infinite set of left-over service curves. Even though

they are all valid, some of them are irrelevant for delay bounding.

To show this, we will look at the left-over operation in detail and

distinguish two cases:

(1) The burst 𝜎 of flow 𝑓 arrival curve 𝛼 exceeds the initial burst

of the service curve:

𝜎 ≥ ∧
1≤𝑥≤𝑛 𝜎𝑥 .

(2) The burst 𝜎 of flow 𝑓 arrival curve 𝛼 is smaller than the

initial burst of the service curve:

𝜎 <
∧

1≤𝑥≤𝑛 𝜎𝑥 .

Each left-over service curve is again a pseudoaffine curve, which

we will denote by[
𝜋𝑙 .𝑜.

]
𝑏𝑜𝑢𝑛𝑑𝜃

= 𝛿 [𝐷𝑙 .𝑜.]𝑏𝑜𝑢𝑛𝑑𝜃
⊗
[ ⊗
1≤𝑥≤𝑛

𝛾[𝜎𝑙 .𝑜.]𝑏𝑜𝑢𝑛𝑑𝜃 ,[𝜌
𝑙 .𝑜.]𝑏𝑜𝑢𝑛𝑑𝜃

]
(24)

where 𝑏𝑜𝑢𝑛𝑑𝜃 refers to a bound on the value of 𝜃 .

B.2.1 The burst 𝜎 of flow 𝑓 arrival curve 𝛼 exceeds the initial burst
of the service curve. Both, the arrival curve 𝛼 and the service curve

𝜋 , start with an initial burst. However, the burst in 𝛼 exceeds that of

the service curve. In other words, flow 𝑓 arrives with a burst of data

that cannot be readily processed by the initial offered service. This

only occurs at a later time, when the service has caught up with

the initial burst, which is identical to the delay bound ℎ𝐷𝑒𝑣 (𝛼, 𝜋).
Thus, the left-over service inevitably gets delayed to at least this

point. For reasons that will become evident later on, we will refer

to this point as 𝜃𝑚𝑖𝑛 :

𝜃𝑚𝑖𝑛 = ℎ𝐷𝑒𝑣 (𝛼, 𝜋) = 𝐷 +
∨

1≤𝑖≤𝑛

[
𝜎 − 𝜎𝑖

𝜌𝑖

]+
(25)

The shape of the left-over service curve 𝜋 now depends on our

choice of the FIFO parameter 𝜃 ∈ R+
and we again distinguish two

cases:

(1) Data of flow 𝑓 arrives before the provided service meets its

initial demand 𝜃 < 𝜃𝑚𝑖𝑛 . This notation might seem counter-

intuitive, and we will see later that this case leads to irrele-

vant left-over service curves.

(2) The data starts arriving when its initial demand can already

be met 𝜃 ≥ 𝜃𝑚𝑖𝑛 .

Case a) Data of flow 𝑓 arrives before the provided service meets its
initial demand 𝜃 < 𝜃𝑚𝑖𝑛 : The server needs some time to catch up

with the incoming data; left-over service can only be provided as
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(a) Computing the left-over service at server 3 requires a left-over
operation in Theorem 3 𝛽𝑙 .𝑜.

𝑓
2

„ i.e., removing crossflow 𝑓2 arrival
curve 𝛼2. Under FIFO multiplexing, this will result in a set of left-
over service curves, encoded by the indexed FIFO parameter 𝜃2. We
focus on the left-over service curve shown by the solid orange curve.
The dotted orange curve represents another curve from the set, for a
different value of 𝜃2. Since the ideal value of 𝜃2 is not known at this
stage, we continue with the entire set of left-over service curves.

(b) To compute the service available to the foi across servers 2 and 3,
we apply Theorem 4 to the service offered by server 2, 𝛽2, and the
left-over service at server 3 as a result of crossflow 𝑓2. The result of
the convolution operation is shown by the yellow curves. Again, we
have plotted one resulting curve in a solid line and indicated the set
of curves by including another curve plotted with a dotted line.

Figure 6: Computation of the left-over service curve for flow 𝑓2 at servers 2 and 3 in the example network from Figure 1a.

(a) Analogously to Figure 6a, we apply Theorem 3 to determine the
left-over service experienced by the foi at server 1 as a result of
crossflow 𝑓1.

(b) We can now compute the total service available to the foi. For this
we once again apply Theorem 4 to the results of Figures 6b and 7a.
The resulting left-over service (olive-colored graphs) depends on
both parameters we introduced in the computation, 𝜃1 and 𝜃2.

Figure 7: Computation of the left-over service experienced by the foi over the example network from Figure 1a.

soon as data of flow 𝑓 has been processed. The latency of the left-

over service curve 𝜋𝑙 .𝑜.
is therefore determined by the intersection

point 𝑡𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 of the arrival curve 𝛾𝜎,𝜌 and the initial service curve

𝜋 : [
𝐷𝑙 .𝑜.

]
𝜃<𝜃𝑚𝑖𝑛

= 𝑡𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡

= max

1≤𝑥≤𝑛

{
𝑡𝑥 : 𝛾𝜎,𝜌 (𝑡𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 − 𝜃 ) = 𝛾𝜎𝑥 ,𝜌𝑥 (𝑡𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 − 𝐷)

}
= 𝐷 +

∨
1≤𝑖≤𝑛

[
𝜎 + 𝜌 (𝐷 − 𝜃 ) − 𝜎𝑖

𝜌𝑖 − 𝜌

]
(26)

The rates of the service curve decrease according to the arrival

curve’s rate 𝜌 , as the server needs to process further incoming data:[
𝜌𝑙 .𝑜.𝑥

]
𝜃<𝜃𝑚𝑖𝑛

= 𝜌𝑥 − 𝜌,∀𝑥 ∈ [1, 𝑛] (27)
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Figure 8: We can now use Theorem 7 to compute the delay bound. Since we introduced the FIFO parameters, 𝜃1 and 𝜃2, along the
way, the solution now depends on these two parameters. We can find the optimal values of the parameters and subsequently
the delay bound by the means described in Section 5.

The bursts 𝜎𝑥 ,∀𝑥 ∈ [1, 𝑛] of the service curve stages decrease to[
𝜎𝑙 .𝑜.𝑥

]
𝜃<𝜃𝑚𝑖𝑛

= 𝛾𝜎𝑥 ,𝜌𝑥

( [
𝐷𝑙 .𝑜.

]
𝜃<𝜃𝑚𝑖𝑛

− 𝐷

)
− 𝛾𝜎,𝜌

( [
𝐷𝑙 .𝑜.

]
𝜃<𝜃𝑚𝑖𝑛

− 𝜃

)
(28)

= 𝜎𝑥 − 𝜎 + 𝜌 · 𝜃 − 𝜌𝑥 · 𝐷+

(𝜌𝑥 − 𝜌)
[
𝐷 +

∨
1≤𝑖≤𝑛

[
𝜎 + 𝜌 (𝐷 − 𝜃 ) − 𝜎𝑖

𝜌𝑖 − 𝜌

] ]
(29)

= 𝜌𝑥

{
𝜎𝑥 − 𝜎 + 𝜌 · (𝜃 − 𝐷)

𝜌𝑥
+
(
1 − 𝜌

𝜌𝑥

) [ ∨
1≤𝑖≤𝑛

[
𝜎 + 𝜌 (𝐷 − 𝜃 ) − 𝜎𝑖

𝜌𝑖 − 𝜌

] ]}
(30)

The set of left-over service curves belonging to this case is then

given by Equation (24) with 𝜃 < 𝜃𝑚𝑖𝑛 as the bound on 𝜃 .

Case b) The data starts arriving when its initial demand can already
be met 𝜃 ≥ 𝜃𝑚𝑖𝑛 : In this case, the server can immediately provide

ample service to process the demand by flow 𝑓 . Left-over service

is immediately provided at 𝜃 . The latency of the left-over service

curve therefore is [
𝐷𝑙 .𝑜.

]
𝜃≥𝜃𝑚𝑖𝑛

= 𝜃 (31)

The rates decrease analogously to case a)[
𝜌𝑙 .𝑜.𝑥

]
𝜃≥𝜃𝑚𝑖𝑛

= 𝜌𝑥 − 𝜌,∀𝑥 ∈ [1, 𝑛] (32)

The bursts of the service curve stages decrease by the arrival curve

burst to[
𝜎𝑙 .𝑜.𝑥

]
𝜃≥𝜃𝑚𝑖𝑛

= 𝛾𝜎𝑥 ,𝜌𝑥 (𝜃 − 𝐷) − 𝛾𝜎,𝜌 (0) = 𝜌𝑥 (𝜃 − 𝐷) + 𝜎𝑥 − 𝜎

(33)

This yields a set of left-over service curves

[
𝜋𝑙 .𝑜.

]
𝜃≥𝜃𝑚𝑖𝑛

as speci-

fied by Equation (24).

We can reduce the set of relevant left-over service curves with

the following theorem.

Theorem 9. For every curve
[
𝜋𝑙 .𝑜.

]
𝜃𝑎<𝜃𝑚𝑖𝑛

resulting from case a)
and an arbitrary 𝜃𝑎 ∈ R+, there is a curve[
𝜋𝑙 .𝑜.

]
𝜃𝑏≥𝜃𝑚𝑖𝑛

≥
[
𝜋𝑙 .𝑜.

]
𝜃𝑎<𝜃𝑚𝑖𝑛

resulting from case b). This makes
the set of curves from case a) inferior to that of case b) and therefore
irrelevant for delay bounding.

Proof. First note that since

[
𝐷𝑙 .𝑜.

]
𝜃𝑎<𝜃𝑚𝑖𝑛

≥ 𝜃𝑚𝑖𝑛 , and[
𝐷𝑙 .𝑜.

]
𝜃𝑏≥𝜃𝑚𝑖𝑛

= 𝜃𝑏 ≥ 𝜃𝑚𝑖𝑛 we can compare each curve from case

a) to a curve from case b) with an equal latency by setting 𝜃𝑏 =[
𝐷𝑙 .𝑜.

]
𝜃𝑎<𝜃𝑚𝑖𝑛

.

Further note that the rates of the two curves are identical[
𝜌𝑙 .𝑜.𝑥

]
𝜃𝑎<𝜃𝑚𝑖𝑛

=
[
𝜌𝑙 .𝑜.𝑥

]
𝜃𝑏≥𝜃𝑚𝑖𝑛

= 𝜌𝑥 − 𝜌,∀𝑥 ∈ [1, 𝑛].
The comparison of the two curves therefore depends on the

comparison of their bursts. From Equation (28) and Equation (33)

we see that[
𝜎𝑙 .𝑜.𝑥

]
𝜃𝑎<𝜃𝑚𝑖𝑛

= 𝛾𝜎𝑥 ,𝜌𝑥

( [
𝐷𝑙 .𝑜.

]
𝜃𝑎<𝜃𝑚𝑖𝑛

− 𝐷

)
− 𝛾𝜎,𝜌

( [
𝐷𝑙 .𝑜.

]
𝜃𝑎<𝜃𝑚𝑖𝑛

− 𝜃𝑎

)
(34)

≥ 𝛾𝜎𝑥 ,𝜌𝑥

( [
𝐷𝑙 .𝑜.

]
𝜃𝑎<𝜃𝑚𝑖𝑛

− 𝐷

)
− 𝛾𝜎,𝜌 (0) (35)

=
[
𝜎𝑙 .𝑜.𝑥

]
𝜃𝑏≥𝜃𝑚𝑖𝑛

���
𝜃𝑏=[𝐷𝑙 .𝑜.]𝜃𝑎<𝜃𝑚𝑖𝑛

(36)

where the inequality follows from the property that 𝛾𝜎,𝜌 is wide-

sense increasing and that 𝜃𝑎 ∈ R+
. This proves the theorem. □

B.2.2 The burst 𝜎 of flow 𝑓 arrival curve 𝛼 is smaller than the initial
burst of the service curve. Up until now, our proof is comparable

to the proof of the set reduction for the left-over operation with

rate-latency curves (Equation (11)) presented in [18]. This section

describes a case that is not covered by this proof. We start by noting

that in this case 𝜃𝑚𝑖𝑛 = 𝐷 , since 𝜎 < 𝜎𝑖 ,∀1 ≤ 𝑖 ≤ 𝑛. Then, the two

cases identified in the previous section become



ICPE ’25, May 5–9, 2025, Toronto, ON, Canada Lukas Herll and Steffen Bondorf

(1) 𝜃 < 𝐷

(2) 𝜃 ≥ 𝐷

However, here case a) differs from the previous section in that we

can define a new sub-case for it. The initial burst of flow 𝑓 is small

enough that it could be readily processed by the initial burst in

the service. In particular circumstances, 𝑓 could arrive before any

service is provided without causing further latency to the left-over

service. This is a sub-case of case a) from the previous section.

We note that this case occurs when 𝜃 < 𝜃𝑚𝑖𝑛 = 𝐷 (the previous

case a)), but additionally 𝜃 < 𝜃0 where we define 𝜃0 as the point

where 𝛼 exactly intersects with the point (𝐷,∧
1≤𝑖≤𝑛 𝜎𝑖 ). By setting

𝛾𝜎,𝜌 (𝐷 − 𝜃0) = 𝜋 (𝐷) =∧
1≤𝑖≤𝑛 𝜎𝑖 we obtain an expression for 𝜃0:

𝜃0 = 𝐷 +
𝜎 −∧

1≤𝑖≤𝑛 𝜎𝑖
𝜌

(37)

Every 𝜃 ≤ 𝜃0 yield a results analogous to case a) of the previous

section. In the same way every 𝜃 ≥ 𝜃𝑚𝑖𝑛 yields a result analogous to

case b) of the previous section. By Theorem 9 these curves following

from 𝜃 ≤ 𝜃0 are irrelevant for delay bounding.

Every 𝜃0 < 𝜃 < 𝜃𝑚𝑖𝑛 = 𝐷 , however, leads to a left-over service

curve with unchanged latency. Since these curves are not covered

by the previous section, we will derive them now and then show

that they are also irrelevant for delay bounding. The latency of

these curves is given by[
𝐷𝑙 .𝑜.

]
𝜃0<𝜃<𝜃𝑚𝑖𝑛

= 𝐷 (38)

The rates decrease analogously to the previous cases[
𝜌𝑙 .𝑜.𝑥

]
𝜃0<𝜃<𝜃𝑚𝑖𝑛

= 𝜌𝑥 − 𝜌,∀𝑥 ∈ [1, 𝑛] (39)

The bursts of the left-over service curve stages decrease to[
𝜎𝑙 .𝑜.𝑥

]
𝜃0<𝜃<𝜃𝑚𝑖𝑛

= 𝛾𝜎𝑥 ,𝜌𝑥 (0) − 𝛾𝜎,𝜌 (𝐷 − 𝜃 ) (40)

= 𝜎𝑥 − 𝜎 − 𝜌𝑥 (𝐷 − 𝜃 ) (41)

< 𝜎𝑥 − 𝜎 (42)

where the inequality follows from 𝜌𝑥 ∈ R+
and 𝜃 < 𝐷 .

Theorem 10. For every curve
[
𝜋𝑙 .𝑜.

]
𝜃0<𝜃𝑎<𝜃𝑚𝑖𝑛

resulting from the
sub-case of a) and an arbitrary 𝜃𝑎 ∈ R+, there is a curve[
𝜋𝑙 .𝑜.

]
𝜃𝑏≥𝜃𝑚𝑖𝑛

≥
[
𝜋𝑙 .𝑜.

]
𝜃0<𝜃𝑎<𝜃𝑚𝑖𝑛

resulting from case b). This makes
the set of curves from the sub-case of a) inferior to that of case b) and
therefore irrelevant for delay bounding.

Proof. Consider the left-over service curve obtained from 𝜃 = 𝐷

(case b)) and compare it to the curve derived above. The latencies

and rates are identical. However, note that the bursts are larger

for the curve derived from 𝜃 = 𝐷 . Using Equation (33) and Equa-

tion (42):[
𝜎𝑙 .𝑜.𝑥

]
𝜃𝑏≥𝜃𝑚𝑖𝑛

���
𝜃𝑏=𝐷

= 𝛾𝜎𝑥 ,𝜌𝑥 (𝐷 − 𝐷) − 𝛾𝜎,𝜌 (0)

= 𝜎𝑥 − 𝜎 >
[
𝜎𝑙 .𝑜.𝑥

]
𝜃0<𝜃𝑎<𝐷

(43)

Therefore

[
𝜋𝑙 .𝑜.

]
𝜃𝑏≥𝜃𝑚𝑖𝑛

���
𝜃𝑏=𝐷

≥
[
𝜋𝑙 .𝑜.

]
𝜃0<𝜃𝑎<𝜃𝑚𝑖𝑛

□

From Theorem 9 and Theorem 10 we conclude that the the set of

relevant left-over service curves is given by Equations (31) to (33).

Now that we have established that we can discard all cases where

𝜃 < 𝜃𝑚𝑖𝑛 we can rewrite 𝜃 as

𝜃 = 𝜃𝑚𝑖𝑛 + 𝑠, 𝑠 ∈ R+
(44)

Then, we can rewrite the set of relevant left-over service curves

using the new 𝑠 parameter:[
𝐷𝑙 .𝑜.

]
𝜃≥𝜃𝑚𝑖𝑛

= 𝜃𝑚𝑖𝑛 + 𝑠 = ℎ𝐷𝑒𝑣 (𝛼, 𝜋) + 𝑠, 𝑠 ∈ R+
(45)[

𝜌𝑙 .𝑜.𝑥

]
𝜃≥𝜃𝑚𝑖𝑛

= 𝜌𝑥 − 𝜌,∀𝑥 ∈ [1, 𝑛] (46)[
𝜎𝑙 .𝑜.𝑥

]
𝜃≥𝜃𝑚𝑖𝑛

= 𝛾𝜎𝑥 ,𝜌𝑥 (𝜃𝑚𝑖𝑛 + 𝑠 − 𝐷) − 𝛾𝜎,𝜌 (0) (47)

= 𝜌𝑥

{ ∨
1≤𝑖≤𝑛

[
𝜎 − 𝜎𝑖

𝜌𝑖

]+
+ 𝑠

}
+ 𝜎𝑥 − 𝜎 (48)

= 𝜌𝑥 {𝑠 + ℎ𝐷𝑒𝑣 (𝛼, 𝜋) − 𝐷} − (𝜎 − 𝜎𝑥 ) (49)

thus bringing us to the notation from Theorem 5.
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